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LElTER TO THE EDITOR 

Monte Carlo test of dimensional reduction for branched 
polymers in three dimensions 
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Theoretical Physics, ETH-Honggerberg, 8093 Zurich, Switzerland 

Received 5 March 1985, in final form 15 April 1985 

Abstract. By a Monte Carlo simulation of a grand canonical ensemble for a lattice tree 
model of branched polymers in three dimensions we obtain the estimates 0 = 1.501 f 0.043, 
v = 0.495*0.013 for the critical exponents. These estimates strongly support the exact 
conjecture 0 = 3, Y = f by Parisi and Sourlas obtained using dimensional reduction. The 
attrition constant p is also estimated. 

The self-avoiding lattice trees are a natural model for isolated branched polymers in 
a good solvent, since they mimic the repulsive interaction between the monomers of 
the polymer conformation. The field theoretic formulation of the model suggests that 
it belongs to the same universality class as the lattice animals (Lubensky and Isaacson 
1970). Using this formulation, a connection was found (Parisi and Sourlas 1981) 
between this universality class in d dimensions and the Lee-Yang edge singularity of 
the Ising model in d -2  dimensions. Since the Ising model can be solved exactly in 
zero and one dimension, this yielded exact values for the ‘critical’ exponents 8 and v 
in two and three dimensions. Namely, 8 = 1 in two and 8 = i, v = in three dimensions. 

These exponents describe the statistics of the branched polymers in the dilute limit: 
let N ( n )  be the number of different configurations of branched polymers made of n 
monomers (bonds) and R,  the mean radius of gyration. It is then expected that for 
large n 

R, - nu.  

An intermediate step of the Parisi-Sourlas dimensional reduction for the branched 
polymer model is the application of the inverse replica trick, which transforms it into 
an Ising model in an imaginary random magnetic field. In the approximation of 
keeping only the leading infrared divergent diagrams, this Ising model is then equivalent 
to an Ising model with deterministic imaginary magnetic field in two dimensions less. 
In view of the recent results (Fisher et a1 1984, Imbrie 1984) concerning the lower 
critical dimension of the random field Ising model, which strongly indicate that the 
dimensional reduction is incorrect in the case of a real magnetic field, it is interesting 
to test the Parisi-Sourlas prediction for 8 and v in three dimensions with a highly 
accurate numerical method. See Bovier et a1 (1985) for a recent review on branched 
polymers and dimensional reduction. 

Although most of the earlier numerical estimates of these exponents are consistent 
with or close to the predicted exact values, they do not reliably confirm or rule them 
out. Exact enumerations of lattice animals (Peters et a1 1979) and lattice trees (Gaunt 
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et a1 1982) have only been performed for S11 sites and are therefore subject to large 
systematic errors. On the other hand, earlier Monte Carlo studies (Redner 1979, Gould 
and Holl 1981, Seitz and Klein 1981) have only been concerned with estimating v and 
differ considerably from each other in their estimates. This could be due to the method 
with which the exponent U is extracted from the Monte Carlo simulation, which 
produces lattice trees (animals) with a fixed number of bonds (sites) and therefore 
average radii of gyration R, for various n. The exponent v is then obtained by 
performing a least squares fit to the relation In(R,) = v ln(n) + c following from (lb) 
for large n. However, R, is not only plagued by a statistical error inherent in any 
Monte Carlo experiment but also by a systematic error resulting from corrections to 
scaling at finite n. It seems therefore hard to distinguish these two possible sources 
for errors on the estimate of the exponent U by using this method. 

In this letter, we report the results of a new Monte Carlo simulation for the 
self-avoiding lattice trees on the cubic lattice Z3. This algorithm is very similar to the 
one used by Beretti and Sokal(l984) to study the self-avoiding walk in two dimensions. 
It has subsequently been adapted to simulate self-avoiding lattice trees in two 
dimensions (Caracciolo and Glaus 1984). The only change introduced for the simula- 
tion in three dimensions was the usage of hash coding (Knuth 1973) in order to 
guarantee a quick self-avoiding check. 

We define a lattice tree T as an embedding of an abstract tree (i.e. a minimally 
connected graph) into H3, such that the vertices of the graph are mapped onto the 
lattice sites in a way that two vertices connected by a line are mapped onto nearest- 
neighbour sites and the line is identified with the elementary bond connecting these 
two sites. The self-avoiding constraint is imposed by requiring each vertex of the 
abstract tree to be mapped onto a different point in Z3. In the polymer language, the 
elementary bonds are then the monomers. 

Our Monte Carlo algorithm generates lattice trees with one point fixed at the origin 
at a fixed 'bond activity' p. Let IT1 be the number of bonds contained in T. Then, 
each lattice tree T has the probability 

of occurring in the ensemble. 

n bonds is equal to 
It follows from ( 2 )  that during the simulation, the probability for a tree T to have 

The extra term ( n  + 1) in the numerator of (3) comes from the fact that the origin is 
kept fixed and N ( n )  counts only the configurations, i.e. the equivalence classes of 
lattice trees with respect to lattice translations. 

The algorithm is a Markov process with ( 2 )  as its unique equilibrium distribution. 
A Monte Carlo step is defined by the following procedure: a site s of T is first chosen 
at random. A random number r E [0,1) is then compared to a constant p ( p )  < 1. If 
r S p ( P ) ,  an attempt is made to remove s from T, which is realised i f s  is not the origin 
and it is connected to only one other point. If r > p ( p ) ,  it is attempted to add a bond 
b at s into one of the 2 d  possible directions induced by r lying on one of the 2d equal 
sections in the interval [ p ( p ) ,  11. The self-avoiding check is now performed for the 
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site S I  on the other end of b. I f  a transition is not allowed, the previous configuration 
is taken at the next step. 

Caracciolo and Glaus (1984) have verified that by choosing 

P(P)=(1+2dP)-'  (4) 

detailed balance is satisfied for (2). The algorithm is also ergodic, any tree T' can be 
reached from T by removing all bonds from T until only the origin is left and then 
building up T'. 

We tested whether our algorithm actually does produce lattice trees according to 
the distribution (2) by performing runs at the temperatures j3 = 0.03, 0.05, 0.07, which 
yield primarily trees with a small number of bonds. We then compared the observed 
distribution for the number of bonds n, conditional on nS10,  and the expected 
distribution (3), using for N ( n )  the results of Gaunt et a1 (1982), by the x 2  test. We 
found good agreement with theory for all three temperatures. 

We have performed a main run at j3 = 0.091 98, which corresponds to a mean 
number of bonds 

( I  TI) - PP (3 - 8 )/ ( 1 - PP ) = 45. (5)  
The program was running for 15 x lo9 MC steps, requiring about 500 hours of CPU time 
on a CDC-174. The total rejection rate (null transitions) was 57.1%. Data were taken 
every 3 X lo4 MC steps and stored on tape for the subsequent statistical analysis. 

In the determination of the statistical and systematic errors we have relied on the 
detailed description in the work of Beretti and Sokal (1984) and refer the reader to 
their paper for further information. 

We first estimated the autocorrelation times TAA for the observables A = I TI and 
R:, the squared radius of gyration, which we define as 

Here xi are the sites of T in Z3, except the origin. The resulting values are 

TR:R:' (8.4k0.8) X lo4 MC steps (7a) 

TIqlrl=(8.7*0.8) x104 MC steps. (7b)  

( I  TI) = 46.79 * 0.27. 

From this, the mean number of bonds in our simulation is estimated to be 

(8)  

The error bars above denote the classical statistical 95% confidence limits. For the 
autocorrelation time T of our algorithm we take the estimate (7b) of ~ 1 ~ 1 1 ~ 1 .  

In order to estimate p and 8, we assume that for n 3 n M I N ,  we have exactly 

N ( n ) = a o ~ n n - 8 ( 1 + a l / n ) .  (9) 

The term (a , /n)  is introduced to take into account corrections to scaling. 
Now, for any observable A(I TI) depending only on the number of bonds I TI, we 

can, using the probability (3) and the theoretical ansatz (9) for N ( n ) ,  define a theoretical 
average by 

(A(ITt))>y= f A ( n ) ( n  + l) 'N(n)P" ( 5 ( n  + l)'N(n)P")-'. (10) 
n = nmln n = nmln  
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Conversely, using our data we obtain the observed average 

T, are the successive samples of trees stored on tape and to is the sample size, e.g. in 
our case 5 x lo'. x is the characteristic function for IT,\ to be greater than or equal to 
nmin. Our estimates for p and 8 were obtained by fitting them such that the theoretical 
averages (10) of I TI and log1 TI agree exactly with their corresponding observed averages 

In table 1 we have listed the values for p and e for various a, and nmin. It is seen 
that for a, = 0 e and p are almost independent of nmin! Moreover, the values for a, < 0 
(a,>O) show a systematic downwards (upwards) dependence of p and 0 on nmin, 
which seems to converge to the same values as for a, = 0. From table 1 we obtain the 
estimates 

( 1 1 ) .  

p = 10.5439 * 0.0016* 0.0063 (12) 

e =  i . ~ o i ~ o O . o i 2 3 t o . o 3 i .  (13) 

Here, as later, the format is central estimate * systematic error * statistical error. The 
central estimates are the mean of all values for a, = 0. The systematic error is twice 
the difference between the highest and the lowest of these values and the statistical 
error is twice the variance for nmin = 20 obtained from the explicitly known covariance 
matrix for p and 0, multiplied by ( 2 ~ ) ' ' ~ .  There is complete agreement with the 
Parisi-Sourlas prediction 8 =j.  For a,, we estimate a,  = Ok0.2. 

Table 1. ( a )  values for and ( b )  values for 0 obtained as described in the text. 

( a )  

%" 
a1 10 15 20 25 30 

-2.0 10.5543 10.5511 10.5493 10.5486 10.5473 
-1.0 10.5485 10.5473 10.5464 10.5463 10.5455 
-0.5 10.5460 10.5456 10.5451 10.5453 10.5447 

0 10.5435 10.5439 10.5439 10.5443 10.5438 
.0.5 10.5413 10.5423 10.5426 10.5433 10.5430 

10.5422 1 .o 10.5391 10.5408 10.5415 
2.0 10.5352 10.5380 10.5393 10.5406 10.5407 

10.5424 

\ 
a, 10 15 20 25 30 

~ 

-2.0 1.614 1.591 1.576 1.570 1.558 
-1.0 1.553 1.544 1.537 1.536 1.528 
-0.5 1.525 1.522 1.519 1.520 1.514 

0.0 1.499 1.501 1.501 1.505 1.500 
0.5 1.473 1.48 1 1.484 1.489 1.487 
1.0 1.449 1.461 1.467 1.475 1.473 
2.0 1.405 1.424 1.435 1.446 1.448 
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with respect to P and io for fixed b, and nmin. Figure 1 shows a plot of the resulting 
U’S as functions of n,;, for various b,. From this plot we estimate 

v = 0.495 f 0.009 f 0.004. (15) 

0.52 

I . .,. 
0.48 I 

0.02 0.04 0.06 
1 l n m i n  

Figure 1. Y as function of 1/nmin for various b,. Small circles denote least square values. 
Lines are guides to the eye. The arrow denotes our central estimate and the thin lines 
denote our systematic error bars. 

The statistical error is twice the variance for nmin = 30 from least squares theory times 
( 2 ~ ) ’ ’ ~ .  Again, we obtain excellent agreement with the Parisi-Sourlas prediction v = 4. 

Figure 1 indicates that due to corrections to scaling v depends rather strongly on 
nmin. The decreasing influence of these corrections for increasing nmin is reflected by 
the fact that these curves come closer to each other as nmin goes to infinity. It is 
therefore reasonable to extrapolate each of these curves to n,!, = 0 and take the mean 
of these extrapolated values as our central estimate for Y. The systematic error bars 
have been chosen large enough to account for the pronounced effect of corrections to 
scaling for the radius of gyration. Of course, it is assumed in (9) and (14) that these 
corrections have the form (1 + cn-I). For the radius of gyration we have also determined 
v assuming 

R,  = con”(l + ~ , n - ~ )  (16) 
with a correction-to-scaling exponent w < 1. Unfortunately, our data do not allow a 
confident determination of w and Y at the same time. But the values for v obtained 
for various fixed w and c,  are all consistent with (15). 
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Our estimate for the mean ratio of the number of endpoints N b (  T ) ,  i.e. the number 
of points that are connected to only one other point in 7', divided by IT1 is 

In table 2 we compare our results to various other theoretical values and numerical 
estimates for lattice trees and animals. 

Table 2. Comparison with previous estimates of 0, Y and g. 

Method e V LL 

Field theory and dimensional 
reduction" 1.5 0.5 
Flory theoryb 0.5 
Monte Carlo 0.46' 

0.45 f 0.06d 
0.53 f 0.02= 

Exact enumeration ( n  6 IO)' 1.55 *0.05 10.53 * 0.07 

This paper 1.501 *0.012*0.031 0.495*0.009*0.004 10.5439*0.0016*0.0063 
trees 1.001 *0.024*0.054 0.640*0.004*0.004 5.1434*0.0013 f0.0057 

ZD results8 bond SA trees 0.99 *0.020* 0.045 0.635 * 0.009f0.006 5.7335 * 0.001 1 f 0.0050 

a Parisi and Sourlas 1980, Isaacson and Lubensky 1980, 
and Holl 1981, ' Gaunt et a1 1982, * Caracciolo and Glaus 1984. 

Seitz and Klein 1981, Redner 1979, e Could 

The exact enumeration-extrapolation study of Gaunt et al(1982) and the pulsating 
amoeba (at a fixed number of bonds) Monte Carlo study of Seitz and Klein (1981) 
consider the same model as we do. The ratio (17) has also been estimated by Seitz 
and Klein (1981) and their value 0.314 agrees well with ours. 

In table 2 we have also included the results (Caracciolo and Glaus 1984) of the 
two-dimensional simulation for the lattice trees and the bond self-avoiding lattice trees, 
for which the self-avoiding constraint is imposed on the bonds (not on the sites) and 
therefore loops are allowed to be formed. 

In conclusion we have, together with a previous study (Caracciolo and Glaus 1984), 
given strong support to the Parisi-Sourlas dimensional reduction for branched poly- 
mers. It seems therefore worthwhile to try to understand the various approximations 
involved in this reduction from a more rigorous viewpoint. 

It is a pleasure to thank S Caracciolo and A Sokal for stimulating discussions and 
Jiirg Frohlich for his interest. This work was supported by the Swiss National Science 
Foundation. 
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